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Abstract: Cultured meat is an emerging technology for manufacturing meat through cell culture
rather than animal rearing. Under most existing culture systems, the content and maturity of in vitro
generated myotubes are insufficient, limiting the application and public acceptance of cultured
meat. Here we demonstrated that a natural compound, naringenin (NAR), promoted myogenic
differentiation of porcine satellite cells (PSCs) in vitro and increased the content and maturity of
generated myotubes, especially for PSCs that had undergone extensive expansion. Mechanistically,
NAR upregulated the IGF-1/AKT/mTOR anabolic pathway during the myogenesis of PSCs by
activating the estrogen receptor β. Moreover, PSCs were mixed with hydrogels and cultured in a
mold with parallel micro-channels to manufacture cultured pork samples. More mature myosin was
detected, and obvious sarcomere was observed when the differentiation medium was supplemented
with NAR. Taken together, these findings suggested that NAR induced the differentiation of PSCs
and generation of mature myotubes through upregulation of the IGF-1 signaling, contributing to the
development of efficient and innovative cultured meat production systems.

Keywords: cultured meat; public acceptance; flavonoids; naringenin; porcine satellite cells; differen-
tiation medium; myogenesis; estrogen receptor β; IGF-1

1. Introduction

Cultured meat is a future food technology aiming to bridge the meat supply gap by
revolutionizing meat production in a way that is efficient and environmentally friendly [1,2].
As a new type of food, it is challenging, but extremely important, to have the public accept
and enjoy cultured meat [3–5]. From the consumer’s perspective, taking in nutrients and
satisfying flavor and taste are the main purposes of eating meat [6]. Protein is the most
important component of meat, and meat proteins mainly include myofibrillar proteins,
sarcoplasmic proteins, and matrix proteins [7]. Among them, myofibrillar proteins not only
endow myofibers with unique elongated fibrillar structures, but they also act as molecular
motors for muscle contraction [8]. Furthermore, myofibrillar proteins are rich in essential
amino acids in proper proportions, so they can be well absorbed and utilized by the body [9].
In addition, myofibrillar proteins play a decisive role in the water-holding, gelation, and
emulsification properties of meat, endowing it with a characteristic mouthfeel [10–12].
Therefore, cultured meat products should contain adequate myofibrillar proteins, which
are essential for them to achieve superior flavor and nutrition and to be accepted by
the public.

Muscle satellite cells are muscle stem/progenitor cells with the capacity to proliferate
and differentiate in vitro and have been widely applied as seed cells for cultured meat [13].
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During the manufacture of cultured meat, muscle satellite cells first expand to reach suffi-
cient numbers and then differentiate and fuse into myotubes. The differentiation process is
accompanied by the generation and maturation of myosin and actin, as well as myofibril
assembly [14]. As the central protein of muscle, myosin accounts for 50–60% of myofib-
rillar proteins and determines the structure, properties, and function of myofibrils [11].
Meanwhile, myosin heavy chain (MYH) isoforms are the most commonly used markers for
the characterization of myotubes. Different MYH isoforms are expressed at specific stages
of muscle development: myosin heavy chain 3 (MYH3) at the embryonic stage, myosin
heavy chain 8 (MYH8) at the neonatal stage, myosin heavy chain 1 (MYH1), myosin heavy
chain 2 (MYH2), and myosin heavy chain 7 (MYH7) in adult muscle [15,16]. Generally,
muscle satellite cells can differentiate and form myotubes in vitro under conditions of
high cell density or stimulation by serum starvation [17]. However, the differentiation
efficiency is not satisfactory, resulting in a very low proportion of myotubes and myofibrils
in the cultured meat samples, and most proteins are still cytoplasmic proteins and nuclear
proteins [18]. Therefore, the textural and nutritional qualities of current cultured meat
products are inferior to that of traditional meat [19,20].

Several physical and chemical strategies have been reported to improve myosin expres-
sion and myotube formation in vitro, including physical stimulation [19] and compound
induction [21–23]. Physical stimulation usually requires the development of specialized
equipment, often leading to high costs and difficulties in large-scale applications. From the
perspective of cultured meat production, medium modification is a simple and efficient
way to improve production efficiency and product quality. Some growth factors, such as
IGF-1 [24] and small molecular compounds such as dehydrocorydaline [25], silibinin [26],
and resveratrol [27], have been reported to be beneficial for myogenic differentiation. How-
ever, most of the reported compounds only enhance embryonic MYH3 expression but
fail to promote the maturation of myotubes or lack research data on more mature MYH
subtypes. Therefore, it is necessary to explore more effective and safe additives to promote
differentiation and increase myosin expression, accumulation, and maturation, which is of
great importance for the quality improvement of cultured meat.

This study aims to find an economical and effective additive that supports the gen-
eration of a large number of highly mature myotubes in vitro. Furthermore, the relevant
molecular mechanism and application strategy will be explored. These results contribute
to the development of efficient myotube production systems to promote the production
of high-quality cultured meat products with better public acceptance. It also provides a
theoretical and technical basis for deepening muscle development.

2. Materials and Methods
2.1. Cell Culture

C2C12 myoblasts were purchased from ATCC (Shanghai, China) and cultured in the
proliferation medium (PM). Porcine satellite cells (PSCs) were isolated from large white pigs,
as reported previously [28], and cultured on flasks or plates coated with Matrigel (Corning
Inc., Corning, NY, USA) in PM. PM was Dulbecco modified Eagle’s medium (DMEM;
Thermo Scientific, Waltham, MA, USA) containing 10% fetal bovine serum (FBS; Thermo
Scientific, Waltham, MA, USA) and 1% penicillin-streptomycin (P/S; Thermo Scientific,
Waltham, MA, USA). Cells were passaged every 2–3 days to maintain the confluency < 60%.
PSCs at passage 4 (P4) to passage (P8) were used for experiments.

2.2. Myogenic Differentiation

C2C12 myoblasts were seeded on culture plates in PM to achieve a 90% confluence,
then the medium was changed to the basal differentiation medium (DM), supplemented
with 20 µM epicatechin (EC, Sigma-Aldrich, Burlington, MA, USA), 10 µM genistein (GEN,
Sigma-Aldrich), 10 µM luteolin (LUT, Sigma-Aldrich), 50 µM quercetin (QUE, Sigma-
Aldrich), or 10 µM naringenin (NAR, Sigma-Aldrich) to induce differentiation. DM was
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DMEM containing 2% horse serum (HS; Thermo Scientific, Waltham, MA, USA) and 1%
P/S. The differentiation lasted for 3 days, and the medium was changed every day.

PSCs were seeded on Matrigel-coated plates and cultured in PM for 2–3 days. When
cells reached 90% confluence, differentiation was induced in DM supplemented with NAR
at the indicated concentration for 5–7 days. In some experiments, ERβ antagonist PHTPP
(MedChemExpress, Shanghai, China) at 10 µM was added to DM alone or in combination
with NAR. The medium was changed every day.

2.3. Mold Fabrication and 3D Culture

The polydimethylsiloxane (PDMS) mold was imprinted from PLA mold with parallel
micro-channels that were patterned using a 3D printer (Raise3d, Shenzhen, China). The
mold groove area is 1 cm2, and the size of the micro-channel is 500 µm. Before cell seeding,
the PDMS mold was soaked in a 75% ethanol solution for 2 h, washed 3 times with PBS,
sterilized under UV light for 6 h, and dried completely.

PSCs were suspended at a density of 2 × 107 cells/mL in DMEM containing 5 mg/mL
fibrinogen and 0.25 mg/mL Matrigel, followed by adding thrombin (Sigma-Aldrich,
Burlington, MA, USA) for a total enzyme activity of 1 U. After pipetting up and down
multiple times, the mixture was poured onto the PDMS mold. The total volume of the
cell-reagent mixture in every mold was 100 µL. After incubating at 37 ◦C for at least
30 min for hydrogel polymerization, the mold with hydrogels was placed in the medium
for proliferation and differentiation. The fibrinolytic inhibitor aminocaproic acid (ACA;
Sigma-Aldrich, Burlington, MA, USA), at a concentration of 1 mg/mL, was added to the
medium to prevent hydrogel degradation.

2.4. MTT Assay

PSCs were seeded in 96-well plates at a density of 5 × 103 cells/well cultured in
PM supplemented with or without NAR at various concentrations. After 48–72 h, cells
were washed with PBS twice and incubated with the MTT solution (Solebro Science &
Technology Co., Ltd., Beijing, China) at 37 ◦C for 4 h. Then, the supernatant was aspirated,
and 100 µL of DMSO was added to dissolve the formazan. Then, the absorbance values of
each well were measured at 490 nm using a microplate reader (BioTek Instruments Inc.,
Winooski, VT, USA).

2.5. Cell Proliferation Assay

PSCs were seeded in T25 flasks at a density of 4 × 105 cells per flask and cultured
in PM supplemented with or without NAR at various concentrations. After 72 h, the cell
number of each group was counted with a Countness II cell counter (Thermo Scientific,
Waltham, MA, USA).

2.6. Immunostaining

After fixing with 4% paraformaldehyde (in PBS) at 25 ◦C for 15 min, cells were
permeabilized with 0.5% Triton X-100 in PBS for 15 min and blocked with 1% BSA (in
PBS) for 1 h. Then, cell samples were incubated with mouse anti-myosin heavy chain
3 (MYH3) antibody (Santa Cruz Biotechnology, CA, USA) or rabbit anti-Ki67 antibody
(Cell Signaling Technology, Danvers, MA, USA) at 4 ◦C overnight and, subsequently, with
CoraLite488-conjugated goat anti-mouse IgG (H + L) or CoraLite488-conjugated goat anti-
rabbit IgG (H + L) (Proteintech Group, Wuhan, China) at 25 ◦C for 1 h. After staining
with DAPI (Sigma-Aldrich, Burlington, MA, USA) for 10 min, samples were imaged with
a fluorescence microscope (Mshot, Guangzhou, China). The fusion index was calculated
as the percentage of nuclei in MYH3-positive myotubes (≥2 nuclei) to total nuclei within
MYH3-positive myotubes [24]. At least 3 field images were analyzed per sample.

To visualize F-actin in cells cultured in three-dimensional (3D) hydrogels, the samples
were first incubated with CoraLite®488-Phalloidin (Proteintech Group, PF00001) at 4 ◦C for
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2 h. Then, the samples were stained with Hoechst 33342 (Beyotime, C1022) for 10 min and
observed using a fluorescence microscope (Mshot, Guangzhou, China).

2.7. Western Blot

Cells were collected and lysed with RIPA lysis buffer (50 mM Tris, 150 mM NaCl,
0.1% SDS, 1% sodium deoxycholate (pH 7.4), Beyotime, Shanghai, China) for 30 min on
ice. Where indicated, nuclear and cytoplasmic fractions were extracted using a nuclear
and cytoplasmic protein extraction kit (Beyotime, Shanghai, China), according to the
manufacturer’s instructions. For extracting the protein of cells differentiated in the hydrogel,
samples were ground to complete lysis using a tissue grinder (Beyotime, Shanghai, China)
after adding RIPA lysis buffer.

Protein samples were quantified by BCA protein assay (Beyotime, Shanghai, China),
separated by 10% SDS-PAGE, and transferred to PVDF membranes. After blocking with
5% non-fat dried milk in TBS containing 0.1% Tween 20 for 1 h at 25 ◦C, the membranes
were incubated with primary antibodies overnight at 4 ◦C and, subsequently, with HRP-
labeled secondary antibodies (goat anti-mouse, or goat anti-rabbit, Beyotime, Shanghai,
China) for 1 h at 25 ◦C. The following was detailed information for primary antibodies.
Rabbit anti-phospho-IGF-1R, rabbit anti-IGF-1R, rabbit anti-phospho-AKT, rabbit anti-AKT,
rabbit anti-phospho-mTOR, and rabbit anti-mTOR were all obtained from Cell Signaling
Technology (Danvers, MA, USA); mouse anti-ERα, mouse anti-ERβ, mouse anti-IGF-1,
mouse anti-MYH3, mouse anti-MYH8, mouse anti-MYH1/2, and mouse anti-MYH7 were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA); mouse anti-α-tubulin,
mouse anti-GAPDH, and rabbit anti-Histone H3 were obtained from Proteintech Group
(Wuhan, China). Blots were detected with the Tanon 4600SF scanner system (Shanghai,
China) and analyzed using ImageJ (National Institutes of Health, Stapleton, NY, USA) for
densitometry. Protein expression was normalized to α-Tubulin or GAPDH or Histone H3,
then normalized to the control samples and presented as a relative fold change with the
control sample set to a value of 1.

2.8. Statistical Analysis

Experiments were conducted at least three times independently. Data were visual-
ized using Prism, Ver. 8 (GraphPad Software Inc., La Jolla, CA, USA) and presented as
mean ± SD. Statistical significance was defined as p < 0.05, which was determined by the
student’s t-test.

3. Results
3.1. Naringenin Showed an Excellent Effect on C2C12 Myogenesis

Flavonoids widely exist in natural plants and belong to the secondary metabolites
of plants. In this work, we selected five flavonoids that have been reported to promote
myoblast differentiation in vitro or muscle development in vivo, including epicatechin (EC,
flavanol), genistein (GEN, isoflavone), luteolin (LUT, flavone), quercetin (QUE, flavanol),
and naringenin (NAR, flavanone) [22,23,29–31]. The effect of five compounds on in vitro
myogenesis was first verified and compared with the C2C12 myoblast line using the
optimal concentration reported in the literature. The results showed that all five compounds
enhanced the differentiation efficiency of C2C12 cells in vitro. As shown in Figure 1a,b,
the addition of NAR resulted in the greatest increase in the proportion of MYH3+ cells,
which was 3.18-fold (SD = 0.36, p < 0.01) higher than the control group, followed by LUT
(2.65-fold, SD = 0.77, p < 0.05), QUE (2.14-fold, SD = 0.28, p < 0.05), GEN (1. 99-fold,
SD = 0.39, p < 0.05), and EC (1.73-fold, SD = 0.17, p < 0.05). Moreover, the fusion index also
increased in a similar trend to MYH3 expression, with the NAR treatment achieving the
most 5.70-fold (SD = 1.20, p < 0.01) increase (Figure 1a,c). Therefore, NAR showed the
most consistent and excellent effect on myogenic differentiation among these flavonoids,
so further studies on PSCs were carried out using NAR.
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Figure 1. The effect of various flavonoids on myogenic differentiation of C2C12 cells. (a) Repre-
sentative fluorescence images of C2C12 cells after three days of culture in DM alone (Ctrl), or with
supplementation of EC (20 µM), GEN (10 µM), LUT (10 µM), QUE (50 nM), or NAR (10 µM). Green,
anti-MYH3; Blue, DAPI, Scale bar, 100µm. (b) The percentage of nuclei in myotubes (MYH3+ cells)
to total nuclei according to immunofluorescent images from three random views. (c) Fusion index as
a percentage according to immunofluorescent images. Error bars represent mean ± SD. The asterisk
indicates a significant difference between ctrl and the treatment group. * p < 0.05, ** p < 0.01.

3.2. NAR Was Not Toxic for PSCs but Did Also Not Promote PSC Proliferation

We first evaluated the effects of NAR on the biological toxicity, in vitro growth, and
proliferative capacity of PSCs. Ki67 protein is a commonly used marker to evaluate the cell
proliferative activity, which is expressed in the G1, S, G2, and M phases of the cell cycle,
but not in the G0 phase. When PSCs were exposed to various concentrations of NAR for
12 h, the proportion of Ki67+ cells in each NAR treatment and control group was around
20%, showing no significant difference (Figure 2a,b). Besides, PSCs were cultured in PM
supplemented with 0 to 100 µM of NAR for three days, and the absolute cell number was
recorded. The results showed that after three days of culture, there was no significant
difference in the absolute number of all groups, which was about 1.1 × 106 (Figure 2c).
Meanwhile, the cell viability was measured by the MTT assay. The MTT absorbance was
similar for all groups (Figure 2d), indicating that NAR was not cytotoxic to PSCs up to
100 µM. Taken together, our data suggested that NAR did not show a proliferative effect on
PSCs in vitro, but it was not cytotoxic to PSCs.
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Figure 2. The effect of NAR on the proliferation and viability of PSCs. (a) Representative Ki67 fluores-
cence images of PSCs after 12 h of culture in PM supplemented with NAR (0, 5, 10, 20, 50, or 100 µM).
Scale bar, 100µm. (b) The percentage of Ki67+ cells calculated according to immunofluorescent
images from three random views. (c) Absolute number of PSCs after three days of culture in PM
supplemented with NAR (0, 5, 10, 20, 50, or 100 µM). (d) Cell viability by MTT assay. Error bars
represent mean ± SD.

3.3. NAR Promoted Myogenic Differentiation of PSCs at Various Passages

Subsequently, we examined the effect of NAR on the formation and maturation of
myotubes from PSCs of various passages during ex vivo expansion. MYH3 immunoflu-
orescence staining showed that the myogenic differentiation ability was weakened with
the increase in cell expansion and passaging, but treatment with NAR at 10, 20, and 50 µM
all upregulated the differentiation efficiency of PSCs at each passage significantly. Among
the three concentrations, 20 µM NAR showed the optimum effect, with the myogenic
fusion index of P4, P6, and P8 PSCs reaching 183% (SD = 7%, p < 0.001), 207% (SD = 10%,
p < 0.001), and 278% (SD = 21%, p < 0.001) of the control group, respectively (Figure 3a,b).
Furthermore, we detected the expression of two myosin heavy chain (MYH) isoforms,
MYH3 (generated at the embryonic stage), and MYH8 (generated at the neonatal stage).
The results showed that the addition of 20 µM NAR during the differentiation of P4, P6, and
P8 PSCs increased the expression of both MYH3 and MYH8 significantly and consistently.
The expression levels of MYH3 and MYH8 proteins in the 20 µM NAR group were more
than 150% of that in the control group (Figure 3c–e). These results suggested that NAR
could promote the synthesis and maturation of myosin in myotubes differentiated from
expanded myoblasts.
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Figure 3. NAR increased myogenesis of PSCs at different passages. (a) Representative immunofluores-
cent images of differentiating PSCs at different passages after three days of induction in differentiation
medium supplemented with NAR (0, 10, 20, 50 µM). Green, anti-MYH3; blue, DAPI. Scale bar, 100µm.
(b) Fusion index as a percentage according to immunofluorescent images (n = 3 biological replicates).
(c) Western blot analysis of MYH expression in differentiating PSCs at different passages after three
days of differentiation in the absence or presence of NAR (10, 20, 50 µM). (d,e), Quantification of
MYH3 and MYH8 expression according to (c). The bar chart presents the quantification of blot band
intensity, normalized to GAPDH levels, and presented as a fold change relative to the ctrl sample
of P4, which was set to one. Error bars represent mean ± SD. The asterisk indicates a significant
difference from the ctrl group at the same passage. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. NAR Upregulated ERβ and IGF-1 Signaling during Myogenesis of PSCs

NAR has been known as a phytoestrogen whose chemical structure is similar to estro-
gen, and it can activate estrogen receptors (ERs) [32]. We first examined the influence of
NAR on the expression of ER isoforms in PSCs. The results showed that all groups had
no significant difference in the expression of ERα (Figure 4a,c), but NAR supplementation
markedly increased the expression levels of ERβ in whole cells and the nucleus. In partic-
ular, PSCs treated with 20 µM NAR showed significantly elevated expression of ERβ in
whole cells and the nucleus, which was 178% (SD = 34%, p < 0.05) and 173% (SD = 15%,
p < 0.001) of that without NAR treatment, respectively (Figure 4b,d). It suggested that NAR
enhanced the biosynthesis and activity of ERβ during myogenic differentiation.
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Figure 4. NAR upregulated ERβ and IGF-1 signaling during myogenesis. (a,b) Representative blots
of ERα, ERβ, GAPDH, and Histone H3 in whole cells, cytoplasm, and nucleus. Protein was extracted
from P6 PSCs after three days of differentiation in the absence or presence of NAR (10, 20, 50 µM).
(c,d) Quantification of Erα and ERβ ratios according to (a,b). The bar chart presents the quantification
of blot band intensity, normalized to GAPDH or histone H3 levels, and presented as fold change
relative to the sample without treatment of NAR (n = 3 biological replicates). (e,f) Representative blots
of IGF-1, IGF-1R, pIGF-1R, mTOR, pmTOR, AKT, pAKT, GAPDH, and α-tubulin in differentiating P6
PSCs after three days of induction in the absence or presence of NAR (10, 20, 50 µM). (g) Quantification
of IGF-1 expression according to (e). The bar chart presents the quantification of blot band intensity,
normalized to α-tubulin levels, and presented as fold change relative to the sample without treatment
of NAR (n = 3 biological replicates). (h–j) Quantification of pmTOR/mTOR, pIGF1-R/IGF-1R, and
pAKT/AKT ratios according to (f). The bar chart presents the quantification of blot band intensity,
normalized to GAPDH levels, and presented as fold change relative to the ctrl sample (n = 3 biological
replicates). Error bars represent mean ± SD. The asterisk indicates a significant difference from the
ctrl (0 µM NAR) group. * p < 0.05, ** p < 0.01, *** p < 0.001.
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IGF-1 is a well-recognized cytokine for inducing myogenic differentiation and muscle
hypertrophy in vivo and cultured cells [33]. Therefore, we next examined the effect of
NAR on the expression of endogenous IGF-1 and its downstream AKT/mTOR signaling in
differentiating PSCs. Consistent with the expression of MYH and ERβ proteins, 20 µM of
NAR showed the optimum up-regulating effect on endogenous IGF-1 and its downstream
signaling pathway. Treatment of PSCs with 20 µM NAR increased the expression of
endogenous IGF-1 to 175% (SD = 18%, p < 0.01) of the control group (Figure 4e,g) and
upregulated the phosphorylation levels of IGF-1R, AKT, and mTOR proteins to 229%
(SD = 69%, p < 0.05), 223% (SD = 67%, p < 0.05), and 236% (SD = 32%, p < 0.01) of the
control group, respectively (Figure 4f,h–j). Collectively, these results demonstrated that
NAR increased the level of nuclear ERβ and up-regulated the IGF-1/AKT/mTOR anabolic
pathway during the myogenesis of PSCs.

3.5. Inhibition of ERβ Impaired the Effect of NAR on IGF-1 Signaling and Myogenesis

To further clarify the significance of ERβ in NAR-induced myogenic differentiation,
we used an ERβ antagonist, PHTPP, to inhibit the activation of ERβ and then evaluated
the changes in the fusion index after differentiation. The addition of PHTPP significantly
reduced the levels of ERβ in the nuclei of ctrl and NAR-treated PSCs by 33% (SD = 15%,
p < 0.01) and 61% (SD = 28%, p < 0.01) of the original levels, respectively (Figure 5a,b). On
this basis, we analyzed the expression of IGF-1 and key molecules of IGF-1/AKT/mTOR
signaling. The expression of endogenous IGF-1 in PSCs treated with the combination of
PHTPP and NAR was 67% (SD = 7%, p < 0.01) of that in PSCs treated with NAR alone
(Figure 5c,e). Similarly, the phosphorylation levels of IGF-1R, AKT, and mTOR proteins
all decreased obviously to less than 70% of the original level upon the addition of PHTPP
(Figure 5d,f–h). These results indicated that antagonizing ERβ impaired the effect of NAR
on activating the IGF-1 signaling in PSCs during myogenesis.
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Figure 5. Inhibition of ERβ impaired the effect of NAR on IGF-1 signaling and myogenesis. (a) Rep-
resentative blots of ERβ, GAPDH, and histone H3 in whole cells, cytoplasm, and nucleus. Protein
was extracted from P6 PSCs after three days of differentiation with or without supplementation of
NAR (20 µM) and/or PHTPP (10 µM). (b) Quantification of ERβ ratios according to (a). The bar
chart presents quantification of blot band intensity, normalized to GAPDH or histone H3 levels,
and presented as fold change relative to the sample without treatment of NAR or PHTPP (n = 3
biological replicates). (c,d) Representative blots of IGF-1, IGF-1R, pIGF-1R, mTOR, pmTOR, AKT,
pAKT, GAPDH, and α-tubulin in differentiating P6 PSCs after three days of induction with or without
supplementation of NAR (20 µM) and/or PHTPP (10 µM). (e) Quantification of IGF-1 expression
according to (c). The bar chart presents the quantification of blot band intensity, normalized to
α-tubulin levels, and presented as fold change relative to the sample without treatment of NAR or
PHTPP (n = 3 biological replicates). (f–h) Quantification of pmTOR/mTOR, pIGF1-R/IGF-1R, and
pAKT/AKT ratios according to (d). The bar chart presents the quantification of blot band intensity,
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normalized to GAPDH levels, and presented as fold change relative to the sample without treatment
of NAR or PHTPP (n = 3 biological replicates). (i) Representative immunofluorescent images of
differentiating P6 PSCs after three days of induction with or without supplementation of NAR (20 µM)
and/or PHTPP (10 µM). Green, anti-MYH3; blue, DAPI. Scale bar, 100µm. (j) Fusion index as a
percentage according to immunofluorescent images (n = 3 biological replicates). Error bars represent
mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

Furthermore, we observed that, compared with PSCs treated with NAR alone, com-
bined exposure of PHTPP and NAR markedly inhibited myotube formation during PSC dif-
ferentiation and reduced the fusion index from 57% (SD = 3%) to 43% (SD = 1%) (Figure 5i,j),
indicating that activation of ERβ was required for NAR to exert the myogenic-promoting
effect. Our study showed that, during the differentiation of PSCs in vitro, NAR mediated
nuclear transfer of ERβ signaling to upregulate the expression of IGF-1 and promoted the
activation of IGF-1/Akt/mTOR anabolic pathway, thereby regulating myogenic differenti-
ation and boosting myotube maturation.

3.6. NAR Supported the Generation of Mature Myotubes in a 3D Differentiation Condition

To determine the effect of NAR on producing PSCs-derived myotubes for cultured
meat, we fabricated PDMS molds with parallel micro-channels for the manufacture of
cultured pork samples (Figure 6a). PSCs were mixed with hydrogels and cultured in the
mold for expansion and differentiation in a three-dimensional condition. After seven days
of differentiation, with or without NAR, the generated myotubes were observed by MYH3
immunofluorescence, and the length between the long axis of myotubes was measured
with the ImageJ software. The data showed that the length of generated myotubes by
the induction of NAR in the mold was mainly distributed in the range of 151–200 µm,
significantly longer than that of the control group, which was mostly less than 150 µm
(Figure 6b,c). Furthermore, distinct sarcomere microstructures could be observed in NAR-
induced myotubes but not in control myotubes (Figure 6d). Sarcomeres are repetitive
sections as contractile units of myofibers, and they are representative indicators of mature
myofibers [34]. Therefore, these data showed that NAR was beneficial for the manufac-
ture of cultured meat by promoting PSCs to differentiate into myotubes and mature into
myofibers.

Moreover, the protein expression of various MYH isoforms was analyzed for the
assessment of myosin content and maturity. In addition to embryonic MYH3 and neonatal
MYH8 isoforms, we detected MYH1, MYH2, and MYH7 isoforms, which were formed
in adult muscle [15]. As expected, NAR treatment elevated the expression levels of three
MYH isoforms significantly. Compared to the control group, the expression of MYH3 was
1.98-fold higher (SD = 0.29, p < 0.05), MYH8 was 2.01-fold higher (SD = 0.27, p < 0.01),
and MYH1/2 was 1.45-fold higher (SD = 0.12, p < 0.01) in NAR-differentiated samples
(Figure 6e–i). Conclusively, under the three-dimensional differentiation condition, NAR
was proved to promote the differentiation and maturation of PSCs and increase the content
and maturity of generated myosin, similar to the two-dimensional (2D) culture. Therefore,
NAR would be an important additive for developing an effective, safe, and economical
differentiation medium for the production of high-quality cultured meat.
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Figure 6. NAR promoted the generation of mature myotubes in a three-dimensional differentiation
condition. (a) A schematic diagram of mold fabrication and cell culture for cultured pork manufacture.
(b) Representative immunofluorescent images of differentiating myotubes after seven days of culture
in differentiation medium with or without NAR (20 µM). Green, anti-MYH3; blue, DAPI. Scale bar,
100µm. (c) Myotube length distribution as a percentage according to immunofluorescent images
(n = 3 biological replicates). (d) Representative immunofluorescent images of sarcomere microstruc-
tures. Green, phalloidin; blue, DAPI. Scale bar, 30µm. (e) Representative blots of MYH3, MYH8,
MYH7, MYH1/2, and GAPDH proteins from cultured pork samples, which were differentiated with
or without NAR (20 µM) for seven days. (f–i) Quantification of MYH3, MYH8, MYH7, and MYH1/2
expression normalized to GAPDH from Western blot gels and presented as fold change relative to
the ctrl sample. Error bars represent mean ± SD (n = 3 biological replicates). The asterisk indicates a
significant difference from the Ctrl group. * p < 0.05, ** p < 0.01.

4. Discussion

In recent years, the cultured meat industry has grown rapidly and made encouraging
breakthroughs [17,35]. In the production process of cultured meat, the differentiation
step is crucial to transform cells into edible meat. From publications in the cultured meat
research field, there are relatively few studies focusing on the myogenic differentiation
process and related regulation methods. Tom et al. added IGF-1 to the differentiation
medium of bovine muscle stem cells and observed that the number of myotubes increased
to 3.9 times [21]. Guan and colleagues found that luteolin activated the PI3K/Akt/mTOR
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signaling pathway to promote the expression of MYH3 [23]. Guo et al. proved quercetin
had the pro-differentiation effect and upregulated the expression of MYH by 4.73-fold
compared with the control group [22]. However, there is a large gap in research concerning
the maturation of cultured myofibers. One of the few reports is that Furuhashi et al.
engineered bovine muscle tissue containing aligned and mature myotubes by applying
electrical stimulation during differentiation [19].

Previously, flavonoids have been reported to promote skeletal muscle repair and
inhibit muscle atrophy in mouse models [36–38], implying their potential in promoting
the maturation of myoblasts in vitro. Lee et al. found 20 µM of EC enhanced myogenic
differentiation of C2C12 cells through stimulation of promyogenic signaling pathways,
p38MAPK and Akt [29]. Gan et al. proved that GEN treatment promoted myoblast
differentiation at a dose of 10µM [30]. In addition, QUE, LUT, and NAR were also reported
to be effective in promoting differentiation of different myoblast cells [22,23,31]. In this
work, we first verified and compared the effect of five flavonoids on inducing myogenesis
in vitro and found that NAR showed the most significant effect. NAR is a flavanone
compound widely existing in tomato, grapefruit, and citrus fruits and is an approved
food additive [39,40]. Our experimental results also proved that NAR was not cytotoxic to
PSCs at up to 100 µM, implying the safety of its application in cultured meat production.
Moreover, in the two-dimensional (2D) culture, we found 20 µM NAR promoted the
myogenesis of PSCs at different passages and significantly increased the expression of
MYH8, indicating the generation of mature myotubes.

ERs are widely expressed in skeletal muscle and myoblasts [41]. In general, ERs and
estrogen form dimers and then bind to estrogen receptor binding elements to stimulate
target gene transcription and regulate cell proliferation or differentiation [42,43]. ERs are
mainly composed of two isoforms, estrogen receptor α (ERα) and estrogen receptor β

(ERβ), both of which have been reported to be involved in muscle atrophy [44], muscle
regeneration, and hypertrophy [45–47]. In this work, it was found that the pro-myogenesis
role of NAR was related to ERβ. ERβ signaling is an important factor in regulating skeletal
muscle and muscle satellite cells. Seko and colleagues indicated ERβ was indispensable
for muscle growth and regeneration in female mice [48]. Ogawa et al. found daidzein
down-regulated the expression of ubiquitin-specific protease 19 through ERβ and increased
skeletal muscle mass in young female mice [49]. Velders et al. proved that ERβ regulated
anabolic pathway, muscle satellite cell proliferation, and immune response to affect the
growth and regeneration of skeletal muscle in mice [45].

It has been reported that agonists targeting ERβ possessed anabolic potency and
stimulated the expression of endogenous IGF-1 [45]. IGF-1 is considered to be a factor
closely related to skeletal muscle growth and hypertrophy. It can regulate protein synthesis
and degradation, affect mitochondrial autophagy, and activate calcium signaling mediated
by calcineurin [24,33,50]. By antagonizing ERβ with PHTPP, our study showed that,
during the differentiation of PSCs in vitro, NAR mediated nuclear transfer of ERβ signaling
to upregulate the expression of IGF-1 and promote the activation of IGF-1/Akt/mTOR
anabolic pathway, thereby regulating myogenic differentiation and boosting myotube
maturation.

The manufacture of cultured meat is inseparable from the three-dimensional cell
culture. At present, the three-dimensional modeling methods for cultured meat include
three-dimensional printing [20,51,52], plant protein scaffold [21], hydrogels [53,54], and
microcarriers [55,56]. Different molding methods have their advantages and disadvantages.
For example, plant protein scaffold makes the texture and appearance of the finished
product more similar to that of meat, but its biocompatibility needs further study. Hydrogels
have been widely applied for three-dimensional cell culture due to their excellent cell
compatibility and ease of handling. In this work, we developed a three-dimensional
myogenic differentiation system by mixing PSCs with hydrogels and culturing them
in a PDMS mold with micro-channels, which is of benefit for the formation of aligned
myotubes. Under the three-dimensional differentiation condition, NAR was proved to
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promote the differentiation and maturation of PSCs and to increase the content and maturity
of generated myosin, similar to the two-dimensional culture. Compared with the control
group, the addition of NAR significantly increased the expression of different subtypes of
MYH protein, and obvious sarcomere structures were observed. Therefore, NAR would
be an important additive for developing an effective, safe, and economical differentiation
medium for the production of high-quality cultured meat.

5. Conclusions

We showed that NAR has a significant role in promoting the maturation of myotubes
derived from PSCs in vitro and increasing their myosin content, and it could fill the gap
in the research on the maturation of myotubes in the field of cultured meat. We certified
that NAR-mediated ERβ improves the expression of IGF-1 and then activates the protein
synthesis pathway, which lays a theoretical foundation for the potential application of NAR
in the cultured meat industry.
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